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Abstract——Free radicals are highly reactive mole-
cules generated predominantly during cellular respi-
ration and normal metabolism. Imbalance between
cellular production of free radicals and the ability of
cells to defend against them is referred to as oxidative
stress (OS). OS has been implicated as a potential con-

tributor to the pathogenesis of acute central nervous
system (CNS) injury. After brain injury by ischemic or
hemorrhagic stroke or trauma, the production of re-
active oxygen species (ROS) may increase, sometimes
drastically, leading to tissue damage via several dif-
ferent cellular molecular pathways. Radicals can
cause damage to cardinal cellular components such as
lipids, proteins, and nucleic acids (e.g., DNA), leading
to subsequent cell death by modes of necrosis or apo-
ptosis. The damage can become more widespread due
to weakened cellular antioxidant defense systems.
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Moreover, acute brain injury increases the levels of
excitotoxic amino acids (such as glutamate), which
also produce ROS, thereby promoting parenchyma-
tous destruction. Therefore, treatment with antioxi-
dants may theoretically act to prevent propagation of
tissue damage and improve both the survival and neu-
rological outcome. Several such agents of widely vary-
ing chemical structures have been investigated as
therapeutic agents for acute CNS injury. Although a
few of the antioxidants showed some efficacy in ani-
mal models or in small clinical studies, these findings
have not been supported in comprehensive, controlled
trials in patients. Reasons for these equivocal results

may include, in part, inappropriate timing of admin-
istration or suboptimal drug levels at the target site in
CNS. Better understanding of the pathological mech-
anisms of acute CNS injury would characterize the
exact primary targets for drug intervention. Improved
antioxidant design should take into consideration the
relevant and specific harmful free radical, blood brain
barrier (BBB) permeability, dose, and time adminis-
tration. Novel combinations of drugs providing pro-
tection against various types injuries will probably
exploit the potential synergistic effects of antioxi-
dants in stroke.

I. Introduction

A. Acute Central Nervous System Injury Mechanisms

Stroke is a sudden loss of brain function resulting from
interference with the blood supply to the central nervous
system (CNS1). Acute stroke can be classified either as
ischemic (80% of stroke cases), which can be further clas-
sified to extra-cranial embolism and intracranial thrombo-
sis, or a hemorrhagic stroke (20% of stroke cases), which
can be further classified to intracerebral hemorrhage and
subarachnoid hemorrhage (SAH; Fig. 1).

Stroke is the third most common cause of death in Eu-
rope and North America, and is a major cause of morbidity
particularly in the middle-aged and elderly population
(Bronner et al., 1995; De Freitas and Bogousslavsky,
2001). CNS damage occurs in stroke as a result of hypoxia.
In cerebral ischemia there is an ischemic gradient that can
be divided into the core, which is the central ischemic zone,
and the penumbra, which is located in more peripheral
zones. In the penumbra, functional alterations occur in the
neurons and glial cells. Neurons are most vulnerable to
hypoxia due to their dependence on the oxidative metabo-
lism of glucose for energy. The principal pathophysiological
processes in acute CNS injury, such as stroke, mechanical
trauma, or subarachnoid hemorrhage, are extremely com-
plex and involve pathological permeability of blood brain
barrier (BBB, in part of the CNS injuries), energy failure,
loss of cell ion homeostasis, acidosis, increased intracellu-
lar calcium, excitotoxicity, and free radical-mediated tox-
icity. This can lead to ischemic necrosis, which occurs in
the severely ischemic regions and is associated with loss of
calcium and glutamate homeostasis. It can also lead to
apoptosis, which is more likely to occur in the moderately
ischemic regions, evolves more slowly, and depends on the
activation of a sequence of genes (Pulsinelli, 1992;
Gennarelli, 1997; Dirnagl et al., 1999; Fig. 2)

B. Reactive Free Radicals and Oxidative Stress in
Acute Central Nervous System Injury

A free radical is any chemical compound that contains
one or more unpaired electrons in its outer orbits. Un-
paired electrons alter the chemical reactivity of an atom
or molecule, usually making it more reactive than the
corresponding nonradical, because they act as an elec-
tron acceptor and essentially “steal” electrons from other
molecules. This electron loss is called oxidation and free
radicals are referred to as oxidizing agents (Halliwell
and Gutteridge, 1989). Humans are constantly exposed
to free radicals created by external sources from the
environment (e.g., radon and cosmic radiation) or man-
made and by internal cellular metabolisms. The most
commonly occurring cellular free radical is superoxide
radical (O2

.), which is produced when an oxygen molecule
gains one electron from another substance. Excess
amount of O2

. leads to tissue damage by promoting hy-
droxyl radical (OH�) formation through hydrogen perox-
ide (H2O2) (the iron-mediated Haber-Weiss reaction;
Jenner and Olnaw, 1996; Simonian and Coyle, 1996;
Fig. 3A). Alternatively, O2

. may lead to OH� formation
through an interaction with endogenously formed nitric
oxide (NO�) by nitric oxide synthetase, an enzyme that is
concentrated in certain neurons and activated by Ca2�.
The interaction of NO� with O2

. leads to the formation of
peroxynitrite (ONOO�), which can generate nitrosyl
radical (ONOOH), which decomposes to form OH� (Fig.
3B). Free radicals and related molecules are often clas-
sified together as reactive oxygen species (ROS) to sig-
nify their ability to lead to oxidative changes within the
cell (Simonian and Coyle, 1996). These radicals can
cause cellular damage to cardinal cellular components

1 Abbreviations: EAA, excitatory amino acids; NMDA, N-methyl-
D-aspartate; CNS, central nervous system; BBB, blood brain barrier;
ROS, reactive oxygen species; OS, oxidative stress; SAH, subarach-
noid hemorrhage; PBN, phenyl-�-tert-butyl nitrone; SOD, superox-
ide dismutase; NF-�B, nuclear factor-�B; CHI, closed head injury;
LMWA, low molecular weight antioxidants; MCA-O, middle cerebral
artery occlusion; GSH, reduced glutathione. FIG. 1. Classification of acute stroke.

272 GILGUN-SHERKI ET AL.

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


such as lipids. Polyunsaturated fatty acids are particu-
larly vulnerable to free radical attack, because the dou-
ble bonds within membranes allow easy removal of hy-
drogen ions by ROS such as OH� (Halliwell and
Gutteridge, 1989). Free radicals can also damage pro-
teins and nucleic acids (e.g., DNA), leading to subse-
quent cell death by mode of necrosis or apoptosis. Cells
normally have a number of mechanisms acting to defend
against damage induced by free radicals (Evans, 1993;
Simonian and Coyle, 1996). Problems occur when pro-
duction of ROS exceeds their elimination by the antiox-
idant protective systems or when the latter are dam-
aged. This imbalance between cellular production of
ROS and the inability of cells to defend against them is
called oxidative stress (OS) (Ebadi et al., 1996; Jenner
and Olnaw, 1996; Simonian and Coyle, 1996). OS is
involved in acute and chronic CNS injury and is a major
factor in the pathogenesis of neuronal damage (Facchi-
netti et al., 1998).

1. Oxidative Stress-Mediated Brain Damage. Some
of the pathological processes in acute CNS injury involve
the generation of oxygen free radicals either as a cause
or a result of disease progression (Love, 1999; Lewen et
al., 2000). Free radicals are generated by the constant
use of oxygen in the mitochondria to supply the energy
needs of the brain. Some enzymes expressed in the brain
including monoamine oxidase, tyrosine hydroxylase,
and L-amino acid oxidase produce H2O2 as a normal
byproduct of their activity. The activity of other neuro-

nal enzymes yields oxidants such as the Ca2�-dependent
activation of phospholipase A2. That may lead to arachi-
donic acid release, producing O2

. through its subsequent
metabolism by lipoxygenases and cyclo-oxygenases to
form eiconasoids. Auto-oxidation of endogenous sub-
stances, e.g., ascorbic acid and catecholamines, may yield
high levels of H2O2 (Coyle and Puttfarcken, 1993). There-
fore, ROS have been the focus of interest as possible can-
didates for the elicitation of various pathological responses
in the pathogenesis of acute CNS injury and as a thera-
peutic target (Bromont et al., 1989; Hall, 1989; Oliver et
al., 1990). It is well known that glial cells are more resis-
tant to OS than neurons, probably due to transcriptional
up-regulation of glutathione synthesis (Rice and Russo-
Menna, 1998; Iwata-Ichikawa et al., 1999).

Studies have demonstrated that free radicals play an
important role in the pathogenesis of ischemia, espe-
cially superoxide, which was shown to produce during
the reperfusion phase and interact with NO�, leading to
peroxynitrite formation (Cazevielle et al., 1993). Love et
al. (1999) showed that free radicals and related ROS
mediate much of the damage that occurs after transient
brain ischemia and in the penumbral region of infarcts
caused by permanent ischemia. Demirkaya et al. (2000)
found that patients with acute ischemic hemispheric
stroke had significantly higher levels of malondialde-
hyde in their red blood cells on the first and seventh
days after stroke onset, compared with controls. More-
over, superoxide dismutase (SOD) and glutathione per-
oxidase activities were significantly decreased compared
with control subjects. These results showed a significant
correlation with infarct size, initial stroke severity, and
poor short-term prognosis. Other acute CNS injuries
like SAH and trauma also involve ROS production.
Gaetani et al. (1998) have shown an imbalance of the
antioxidant enzymatic activities in the human brain
after SAH. This antioxidant imbalance precedes the oc-

FIG. 2. Cellular mechanisms that may be involved in acute ischemia
and CNS injury.

FIG. 3. Reactive oxygen species reactions that may lead to OH� pro-
duction. NADP, nicotinamide adenine dinucleotide phosphate; NADPH,
reduced form of NADP; NOS, nitric oxide synthetase.
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currence of symptomatic vasospasm in patients under-
going an operation in the early stage of SAH. The pres-
ence of free hemoglobin in nerve tissue may also
exacerbate the potential for ROS-effected damage
caused by the appearance of free iron salts (Sandrzadeh
et al., 1987). Taking all that together, treatment with
free radical scavengers and antioxidants is a rational
therapeutic strategy for stroke or CNS trauma.

2. Excitotoxicity Insults. One of the first pathophys-
iological events leading to neuronal damage in acute
CNS injury involves glutamate accumulation in the ex-
tracellular space. Glutamate is the major excitatory
amino acid among the excitatory amino acids (EAA) in
the brain, acting mainly through activation of its iono-
tropic receptors. These receptors can be distinguished by
their pharmacological and electrophysiological proper-
ties: the �-amino-3-hydroxy-5-methyl-4-isoxasole-pro-
prionic acid, kainic acid, and the N-methyl-D-aspartate
(NMDA) receptors. Activation of these receptors leads to
depolarization and neuronal excitation. However, if for
any reason receptor activation becomes excessive or pro-
longed, the target neurons become damaged and even-
tually die. In the ischemic brain, extracellular glutamate
is elevated rapidly after the onset of ischemia and de-
clines after reperfusion. The mechanisms that are re-
sponsible for the elevation of extracellular glutamate
include enhanced efflux of glutamate and the reduction
of glutamate uptake. This process seems to involve sus-
tained elevations of intracellular calcium levels through
glutamate transporters operating in the reverse mode,
and owing to imbalance of sodium ions across plasma
membranes. Moreover, the fact that the brain can nei-
ther synthesize nor store energy reserves, means that
any interruption in cerebral blood flow may lead to rap-
idly and irrevocably energy failure and dramatic fall in
intracellular levels of ATP. The consequences will be an
increase in the concentrations of extracellular gluta-
mate and neuronal sensitization to excitotoxic cell
death. It is well established that high levels of glutamate
in the extracellular space appear rapidly after the onset
of ischemia. Nevertheless, a direct linkage between the
enhanced release of glutamate and the neuronal injury
has not been fully established (Coyle and Puttfarcken,
1993; Bondy, 1995; Doble, 1999). Pharmacological stud-
ies in rodents and recent clinical studies in humans have
shown that the extra-neuronal concentration of gluta-
mate rose to toxic levels under ischemic (Benveniste et
al., 1984; Hagberg et al., 1985; Siesjo, 1992a,b; Bullock
et al., 1995; Davalos et al., 1997) and traumatic (Faden
et al., 1989) conditions. In addition, NMDA antagonists
that were added to neuronal cultures, rescued cells
treated with glutamate receptor agonists. Neuroprotec-
tion can be achieved by blocking the presynaptic release
of glutamate and/or by blocking the excitation of
postsynaptic neurons occurring after an ischemic epi-
sode. In this regard, the voltage-sensitive calcium chan-
nels and glutamate receptors may be suitable targets for

therapy (Coyle and Puttfarcken, 1993; Nishizawa,
2001).

3. Oxidative Stress and Excitotoxicity. It is well
known that EAA and neurotransmitters, whose metab-
olism produces ROS, are unique in the brain as sources
of OS (Coyle and Puttfarcken, 1993). It has been pro-
posed that during CNS, ROS (mainly O2

. and NO�) and
EAA (mainly glutamate) may cooperate in the pathogen-
esis of neuronal damage, involving loss of cellular cal-
cium homeostasis (White et al., 1984; Bose et al., 1992;
Siesjo, 1993).

The chain of occurrences has not been well estab-
lished. Excitatory events may stimulate ROS, and there
is evidence that ROS can lead to release of EAA, sug-
gesting a bi-directional relationship (Pellegrini-Giam-
peitro et al., 1990). Several studies provide evidence that
the two phenomena are interrelated. Transient ischemia
elevates cerebral levels of both excitatory amino acids
and rates of hydroxyl radical formation (Delbarre et al.,
1991). The resultant low oxygen supply in the brain
tissue after CNS injury can lead to reduced energy sup-
ply. This anabolic deficit may then result in diminution
of the ionic gradients across the plasma membrane. The
influx of extracellular calcium may then stimulate re-
lease of neurotransmitters including glutamate. In ad-
dition, the capacity of the energy-requiring high-affinity
re-uptake systems is diminished. Thus, extracellular
levels of glutamate may rise. A hyperexcitable state will
ensue, resulting from both the reduced axonal mem-
brane potential and increased calcium-stimulated neu-
rotransmitter release. Subsequent reperfusion will lead
to an abrupt return of glucose and oxygen to neurons,
which disrupts mitochondrial function. Such uncoupling
will then increase the generation rate of ROS. Elevated
intracellular calcium will also exacerbate ROS levels by
phospholipase activation. This will initiate a cycle lead-
ing to increasingly severe neuronal damage. The above
mechanism may explain why both ROS scavengers and
calcium channel antagonists afford protection against
ischemic states. The role of NO in hypoxic neuronal
damage is ambiguous. Influx of calcium into the cell can
activate NO synthetase, thus increasing NO levels. This
radical can interact with the superoxide radical to form
the intensely reactive nitroperoxyl radical, which can be
a cytotoxic mediator in neuronal injury during stroke
and NMDA activation (Cazevielle et al., 1993; Fagni et
al., 1994). However, nitric oxide has also been found to
be neuroprotective, perhaps by reducing the toxicity of
hydrogen peroxide (Wink et al., 1993). Thus, under some
circumstances, inhibition of NO synthesis can potentiate
excitotoxicity (Hayberry et al., 1992). The dual nature of
nitric oxide may best be accounted in terms of its ability
either to exacerbate the harmfulness of some oxidant
species such as superoxide or to form less reactive com-
pounds such as hydrogen peroxide. The effect of NO may
then depend on the precise ROS species that are coex-
isting in the tissue. Taken together, it is now clear that
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tissue damage associated with excitotoxicity may be
blocked, not only by antagonists of EAA receptors, but
also by agents that inhibit generation of ROS (e.g., O2

.

and NO�). Such approaches include agents that inhibit
ROS producing enzymes (e.g., nitric oxide synthetase or
xanthine oxidase) and ROS scavenging agents.

4. Oxidative Stress-Induced Gene Expression. A
large number of gene products appear after an ischemic
insult, making it difficult to decipher which genes are
really involved in the mechanism of tissue injury. ROS
were shown to influence gene expression and to play a
role in the events that lead to neuronal death. In global
cerebral ischemia, the oxidative responsive transcrip-
tion factor, nuclear factor-�B (NF-�B), is persistently
activated. Overall, persistent NF-�B activation en-
hances ischemic neuronal death (Schneider et al., 1999),
but its effects differ between cell types. Activation of
NF-�B in neurons induces production of anti-apoptotic
gene products and proteins involved in modulating syn-
aptic plasticity and increases their survival after stroke.
Activation of NF-�B in glial cells (astrocytes and micro-
glia) results in the production of proinflammatory cyto-
kines and potentially neurotoxic ROS and excitotoxins,
thus, promoting ischemic neuronal degeneration (Matt-
son and Camandola, 2001). The NF-�B translocation
into the nucleus and binding to the NF-�B site can
activate many inducible genes, including but not only
cyclooxygenase-2, inducible nitric oxide, metalloprotein-
ases, intercellular adhesion molecules, and cytokines.
The expression of these genes may lead to formation of
ROS and BBB breakdown, which may lead to apoptosis
or necrosis or both (Chan, 2001). In addition to NF-�B,
many transcription factors such as AP-1, HIF-1, SP-1,
and EIK-1 are known to be redox-sensitive proteins
(Sen, 1998), and their regulation of gene expression by
OS in cerebral ischemia has yet to be determined (Sharp
et al., 2000).

C. Blood-Brain Barrier Integrity

The BBB is a major barricade that separates the brain
microenvironment from the blood within the cerebrovas-
cular tree to allow complex neural signaling without
external interference. According to ultrastructural stud-
ies, endothelial cells in the brain differ fundamentally in
two ways from those in peripheral tissues. First, they
have very few endocytotic vesicles, limiting the amount
of trans-cellular flux. Second, they are coupled by tight
junctions or a zipper-like structure that seal the inter-
cellular cleft and restrict par-cellular flux (Reese and
Karnovsky, 1967). Normally, the tight junctions of the
BBB permit the diffusion of only very small amounts of
water-soluble compounds (par-cellular aqueous path-
way), whereas the large surface area of the lipid mem-
branes of the endothelium offers an effective diffusive
route for lipid-soluble agents (trans-cellular lipophilic
pathway; Rowland et al., 1992). Pathological permeabil-
ity of BBB may occur after closed head injury (CHI) and

SAH, enabling easier drug penetration to the brain. In
other acute CNS injuries such as cerebral ischemia, the
BBB is intact, at least in part, leading to reduction in
drug penetration into the brain. This problem has
prompted researchers to develop methods to induce
transient opening of the tight junctions of the brain
endothelial cells, such as osmotic opening with mannitol
or arabinose (Gumerlock and Neuwelt, 1992).

II. Antioxidants in the Treatment of Acute
Central Nervous System Injury

A. Antioxidants

Antioxidants are exogenous (natural or synthetic) or
endogenous compounds acting in several ways including
removal of O2, scavenging reactive oxygen species or
their precursors, inhibiting ROS formation and binding
metal ions needed for catalysis of ROS generation. The
natural antioxidant system can be classified into two
major groups: enzymes and low molecular weight anti-
oxidants (LMWA). The enzymes include SOD, catalase,
peroxidase, and some supporting enzymes. The LMWA
group of molecules can be further classified into directly
acting antioxidants (e.g., scavengers and chain breaking
antioxidants) and indirectly acting antioxidants (e.g.,
chelating agents). The former are extremely important
in defense against OS. This subgroup currently contains
several hundred compounds. Most of them, including
ascorbic and lipoic acids, polyphenols, and carotenoids,
are derived from dietary sources (Shohami et al., 1997).
The cell itself synthesizes a minority of these molecules,
such as glutathione and NADPH. The distribution of
protective antioxidants in the body has some interesting
features. For instance, there is a relatively high concen-
tration of the water-soluble antioxidant vitamin C in the
brain. However, vitamin E concentrations in CNS are
not remarkably different from those in other organs. The
concentrations of antioxidants also vary within the dif-
ferent regions of the brain itself. For instance, the lowest
concentration of vitamin E is found in the cerebellum
(Vatassery, 1992). It was also shown that enzymatic
antioxidants, such as catalase, are in lower concentra-
tions in the brain than in other tissues.

B. Experimental and Clinical Treatments of Acute
Central Nervous System Injury

As with other neuroprotectants, to achieve high effi-
cacy, antioxidants must penetrate through the BBB, and
be given as early as possible and within the “neuropro-
tective window” (the time interval where they signifi-
cantly reduce or prevent cerebral damage). The thera-
peutic window for successful attenuation of an infarct
volume was shown to be 3 to 4 h in rats (Kaplan et al.,
1991; Memezawa et al., 1992) and cats (Heiss and Ros-
ner, 1983) and 6 to 8 h in nonhumans primates (Jones et
al., 1981). Current early-phase trials of neuropro-
tectants in stroke (e.g., NMDA antagonists) adhered to
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the 4- to 6-h time frame within which tissue rescue may
be possible (Ginsberg, 1994; Pulsinelli, 1995). This is
supported by statistical analysis of relevant animal
studies suggesting that irreversible focal injury begins
within a few minutes and is complete within 6 h (Zivin,
1998).

1. Vitamins.
a. In Prevention. An important finding of epidemio-

logical studies on stroke is the lower risk of cerebral
ischemic events among individuals with frequent con-
sumption of fruit and vegetables (Acheson and Williams,
1983; Vollset and Bjelke, 1983; Joshipura et al., 1999).
The specific nutrients responsible for this effect remain
elusive, but antioxidant vitamins, such as vitamin E,
�-carotene, and vitamin C, which are free radical scav-
engers, may be major contributing factors to this phe-
nomenon.

Vitamin E is a fat-soluble vitamin known to be one of
the most potent antioxidants. It breaks the propagation
of the free radical chain reaction in the lipids of biolog-
ical membranes. Vitamin E deficiency in humans is
caused by either fat malabsorption or genetic abnormal-
ities, leading to peripheral neuropathy and ataxia (Tra-
ber and Sies, 1996). Low levels of antioxidants such as
vitamin E, ascorbic acid, and reduced glutathione (GSH)
could lead to tissue peroxidation disability in rats. Vita-
min E deficiency also influences the activities of SOD,
catalase, and glutathione peroxidase (De Kumar and
Rukmini, 1988). Carotenoids are also natural lipid-sol-
uble antioxidants (Bendich, 1993). �-Carotene is the
best-known carotenoid due to its importance as a vita-
min A (retinol) precursor. �-Carotene possesses antiox-
idant activity somewhat analogous to that of vitamin E.
Studies showed that within 24 h after the clinical event,
acute ischemic stroke patients had lowered levels of
carotenoids and vitamin E as compared with matched
controls (Chang et al., 1998).

Vitamin C (ascorbic acid) is a water-soluble antioxi-
dant that is found throughout the body as the ascorbate
anion. It inhibits peroxidation of membrane phospholip-
ids and acts as a scavenger of free radicals (Padh, 1990;
Rice, 2000). Another important role of vitamin C is the
regeneration of vitamin E (Chan, 1993). Brain concen-
tration of vitamin C is 10-fold higher than its plasma
levels (Frei and England, 1989; Schreiber and Trojan,
1991; Rose and Bote, 1993). This may indicate its poten-
tial role as a cerebro-protective agent.

i. Clinical Studies. Epidemiological studies examin-
ing the correlation between antioxidant vitamin con-
sumption and stroke incidence and mortality produced
conflicting results. On the one hand, Gey et al. (1993),
Keli et al. (1996), and Daviglus et al. (1997) found that
increased antioxidant vitamin intake resulted in a de-
creased risk of stroke. On the other, two randomized
trials showed that �-carotene supplements (Hennekens
et al., 1996) and intake of other antioxidant vitamins
(Blot et al., 1993) were not associated with a reduced

stroke risk. Yochum et al. (2000) found an inverse asso-
ciation between stroke mortality and dietary vitamin E
in postmenopausal women. These conflicting results
may indicate that only people with extraordinarily low
OS and BBB disruption will benefit from vitamin E
supplementation.

b. In Treatment. OPC-14117, a vitamin E analog,
was found to attenuate edema formation and behavioral
deficits after cortical contusion in rats (Kawamata et al.,
1997). MDL 74,722, another vitamin E analog, was
found to reduce infarct volume by 49% after transient
middle cerebral artery occlusion (MCA-O) in rats (Van
der Worp et al., 1999).

To summarize, epidemiological studies preformed us-
ing vitamins to prevent stroke demonstrated conflicting
results. The inconsistent results can be explained by the
fact that vitamin C and vitamin E may be oxidized to
form ascorbyl radical and �-tocopherol radical, which
may act as toxic pro-oxidants in some ischemic circum-
stances (Dyatlov et al., 1998; Rice, 2000). No controlled
clinical study was performed to verify whether vitamins
may be beneficial as a treatment for acute stroke pa-
tients. Thus, vitamins may reduce stroke complications
only if they are given at a specific dose, and within
specific time window. Moreover, it may be that vitamins
are beneficial only when the severity of stroke is mild
with a low OS level in the ischemic zone.

2. Coenzyme Q10. Coenzyme Q10 (ubiquinone) is a
mobile and lipid-soluble compound within the hydropho-
bic core of the phospholipid bilayer of the inner mem-
brane of the mitochondria. It is an essential cofactor in
the electron transport chain, where it accepts electrons
from complexes 1 and 2 (Beyer, 1992; Ernster and Dall-
ner, 1995; Do et al., 1996). Coenzyme Q10 also serves as
an important antioxidant in lipid membranes (Noack et
al., 1994; Forsmark et al., 1997) either directly or by
regenerating vitamin E. Its levels are known to decrease
with age in both human and rat tissues (Beyer et al.,
1985; Kalen et al., 1989; Battino et al., 1995). This
decrease may be caused by reduced synthesis or age-
dependent increases in lipid peroxidation (Forsmark et
al., 1997).

The effect of coenzyme Q10 on the survival of Mongo-
lian gerbils with unilateral carotid ligation-induced
stroke was examined. The control stroke gerbils died
within 24 h. However, with a subcutaneous implanta-
tion of a 250-mg pellet of coenzyme Q10, an improvement
was observed, with 45% survival at 4 weeks (Ogawa et
al., 1986). Another study showed that oral administra-
tion of coenzyme Q10 (10 mg/kg per 6 days) prevented
the development of ischemic brain lesions in a rabbit
model of SAH-induced symptomatic vasospasm (Grieb et
al., 1997). More studies should be performed to evaluate
coenzyme Q10 efficacy in acute CNS injury.

3. Melatonin. Melatonin (N-acetyl-5-methoxy-
tryptamine) is an indoleamide secreted by the pineal
gland, which has structural similarities to serotonin.
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Melatonin is known as a biological modulator of many
physiological mechanisms (e.g., circadian rhythms and
sleep). It is highly lipophilic and, when administered
exogenously, can readily cross the BBB and gain access
to neurons and glial cells. There is experimental evi-
dence that melatonin influences aging and age-related
processes and disease states (Beyer et al., 1998). These
roles are apparently related to its potency as a free
radical scavenger (Beyer et al., 1998).

Several studies have examined the neuroprotective
effects of melatonin as an antioxidant in cerebral isch-
emia. Borlongan et al. (2000) showed that oral adminis-
tration of melatonin, 1 h before MCA occlusion in rats,
significantly enhanced glial cell survival. Moreover, an-
other study showed that pinealectomy in rats increases
the infarct volume after MCA occlusion. Injection of
melatonin (4 mg/kg) to pinealectomized rats before both
ischemia and reperfusion reduced infarct volume by
40%. Melatonin also significantly improved neurological
deficit scores in pinealectomized and in the sham-oper-
ated group subjected to MCA occlusion (Manev et al.,
1996; Kilic et al., 1999). It was found to decrease the
infarct area, prevent neuronal death after MCA-O for
1 h in rats and increase the expression of neuronal bcl-2
in the penumbral area of the ischemic brain (Ling et al.,
1999). This may suggest that melatonin has a potential
role in inhibiting apoptosis after cerebral ischemia.
However, melatonin treatment may be problematic due
to its various physiological roles and multiple undesir-
able side effects.

4. �-Lipoic Acid. �-Lipoate is a LMWA absorbed
from the diet, which crosses the BBB (Packer, 1992;
Packer et al., 1997). It is intracellularly reduced to di-
hydrolipoate, which is exported to the extracellular me-
dium. Both �-lipoate and especially dihydrolipoate are
potent antioxidants and reduce lipid peroxidation.
Hence, protection is potentially afforded to both intra-
cellular and extracellular environments.

�-Lipoate was shown to scavenge hydroxyl radicals,
singlet oxygen, and nitric oxide. In addition, �-lipoate
chelates a number of transition metals, recycles other
antioxidants (such as vitamin C and vitamin E), raises
intracellular levels of glutathione, and modulates tran-
scription factors activities, especially that of NF-�B
(Packer et al., 1997; Packer, 1998).

Prehn et al. (1992) and Backhaus et al. (1992) found
that treatment with dihydrolipoate, but not with �-li-
poate, reduced infarct size after MCA occlusion in mice.
Others reported a protective effect of �-lipoate, only
when given subcutaneously, but not intraperitoneally or
intracisternally. It was found that the S-enantiomer was
more effective than the R-enantiomer when adminis-
tered only 1 h before ischemia (Woltz and Krieglstein,
1996). Cao and Phillis (1995) observed a protective effect
of �-lipoate against ischemia-reperfusion injury in the
Mongolian gerbil model. Gerbils treated with �-lipoate
for 7 days before ischemia-reperfusion exhibited less

change in locomotor activity and less damage to the CA1
hypocampal pyramidal cell layer, than the saline-
treated controls. Controlled clinical studies should be
performed to evaluate its advantages in acute CNS in-
jury.

5. Ebselen. Glutathione peroxidase, in both seleni-
um-dependent and -independent forms, is one of the
major enzymes responsible for the degredation of hydro-
gen peroxide and organic peroxides in the brain. The
seleno-organic compound ebselen has antioxidant activ-
ity through a glutathione peroxidase-like action. This
data has led to extended research of this molecule (Mul-
ler et al., 1984; Wendel et al., 1984).

i. Animal Models. Johshita et al. (1990) showed that
ebselen significantly ameliorated the postischemic hypo-
perfusion after MCA occlusion. Another study showed
that oral ebselen administration (30 mg/kg) 40 min be-
fore MCA occlusion in rats reduced the volume of isch-
emic damage in the cerebral hemisphere and cerebral
cortex by 48 and 53%, respectively (Dawson et al., 1995).
Takasago et al. (1997) showed that 10 mg/kg ebselen
administration reduced the volume of ischemia in the
cerebral hemisphere and cerebral cortex by 31.8 and
36.7%, respectively, in a rodent model of focal cerebral
ischemia (permanent MCA occlusion). Ebselen (50 mg/
kg) ameliorated delayed cerebral vasospasm as detected
angiographically in a canine model of SAH (Watanabe et
al., 1997).

ii. Clinical Studies. Based on encouraging evidence
of the neuroprotective role of ebselen in animal models,
Saito et al. (1998) conducted a randomized, placebo-
controlled clinical study in 286 SAH patients. Ebselen,
given orally at a dose of 300 mg per person per day for 2
weeks, did not affect the incidence of symptomatic vaso-
spasm but significantly ameliorated delayed ischemic
neurological deficits and subsequent cerebral infarction,
leading to an improvement in the overall outcome. In
humans, this compound has come to be regarded as a
neuroprotective agent rather than an antivasospastic
agent.

In 300 patients with acute ischemic stroke, treatment
with ebselen (150 mg twice a day for 2 weeks) within
48 h of stroke onset showed, at 1 month, a significantly
improved outcome, as measured by the Glasgow out-
come scale (Yamaguchi et al., 1998). The improvement
was maintained at 3 months, although this failed to
reach statistical significance. Ogawa et al. (1999) con-
ducted a randomized, double-blind, placebo-controlled
trial of ebselen in 99 patients with complete MCA-O.
Ebselen (150 mg) was given orally within 12 h of onset
and continued for 2 weeks. There was a corresponding
significant reduction in the volume of cerebral infarct
and an improvement in the outcome of patients who had
started treatment within 6 h of onset. These findings
suggest that ebselen may protect the human brain from
ischemic damage in the acute stage. Ebselen was given
in optimal administration route (i.v.), providing rapid
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and controlled delivery of the drug into the brain and is
now in phase 3 clinical stroke trials. These preliminary
clinical results are promising, but further studies are
needed to establish its beneficial effects in stroke.

6. Human Superoxide Dismutase/Superoxide Dis-
mutase-Like Molecules. SOD converts superoxide to
hydrogen peroxide (H2O2) and represents the first line of
defense against oxygen toxicity. Three forms have been
described in man: The first isoform, containing copper
and zinc at its active site (Cu/Zn SOD-1), is found in the
cytoplasm of cells. Another isoform, containing manga-
nese at its active site, is located in the mitochondria (Mn
SOD-2). The third isoform is present in extracellular
fluids such as plasma (Cu/Zn SOD-3). It was found that
the traces of copper, zinc, and manganese metals are
essential for maintaining the antioxidant activity of
SOD (Halliwell, 1994).

i. Animal Studies. Preischemic administration of re-
combinant human SOD has been reported to attenuate
the ischemic damage induced in gerbils by 5-min bilat-
eral carotid artery occlusion (Tagaya et al., 1992). Fur-
ther studies have shown that transgenic mice express-
ing the human Cu-Zn isoform (SOD-1) have a reduced
infarct volume after MCA occlusion. Nitroxides, which
are cell-permeable, nontoxic stable radicals, display
SOD-like activity. Beit-Yannai et al. (1996) and Zhang
(1998) showed that nitroxides (50 mg/kg i.v.) reduced
edema, ameliorated BBB disruption, and markedly im-
proved outcome when administered within a therapeutic
window of 4 h after CHI in rats.

ii. Clinical Studies. In a multicenter, randomized
controlled trial, polyethylene glycol-conjugated SOD
therapy (pegorgotein) failed to improve outcome of pa-
tients with severe head injury, when given within 8 h
after injury (Young et al., 1996). This relatively long
therapeutic time window may explain the failure of SOD
to exhibit a protective effect in this clinical trial.

7. Spin-Trap Scavenging Agents. Spin-trap scaveng-
ing agents are molecules (usually with a nitrone moiety)
that have been used in electron paramagnetic studies for
trapping highly reactive, unstable radicals. These com-
pounds have been shown to protect experimental ani-
mals from pathology, mainly associated with ischemia-
reperfusion injury, physical trauma, and aging (Carney
et al., 1991; Hensley et al., 1997). Phenyl-�-tert-butyl
nitrone (PBN) is a synthetic antioxidant capable of scav-
enging oxygen- and carbon-based free radicals (Kotake,
1999).

In gerbils given PBN before brain ischemia-reperfu-
sion injury, survival significantly improved as compared
with controls (Carney and Floyd, 1991). Preischemic
systemic administration of 100 mg/kg PBN, combined
with 100 mM topical PBN, produced a significant atten-
uation of hydroxyl radical adduct during ischemia-reper-
fusion injury of rat brain (Sen and Phillis, 1993). PBN
was shown to reduce the infarct size after transient
MCA occlusion in rats (Zhao et al., 1994) and to improve

the recovery of brain energy state when given 1 h after
reperfusion (Folbergrova et al., 1995). It was shown to
reduce neuronal necrosis in the neocortex when given 30
min postischemia but not when given before or 6 h after
the ischemic event (Pahlmark and Siesjo, 1996). PBN
also attenuated the secondary mitochondrial dysfunc-
tion after transient focal cerebral ischemia in rats when
given 1 h after the start of recirculation (Kuroda et al.,
1996). Schultz et al. (1997) reported that PBN adminis-
tration (25 mg/kg i.v.) 5 min before and 30 min after
MCA occlusion in rats provided protection of the vascu-
lar endothelium, leading to enhanced postischemic
reperfusion. To promote these molecules for clinical ap-
plications, intensive toxicity studies should be pre-
formed. These agents should be design for short thera-
peutic time windows to combat the earlier ischemic
events.

8. N-Acetylcysteine. NAC is a thiol-containing com-
pound used in clinical practice since the mid-1950s. NAC
has been demonstrated to effectively reduce free radical
species and other oxidants, especially OH and H2O2
(Moldeus et al., 1986). NAC is not synthesized endog-
enously and cannot cross the BBB after exogenous ad-
ministration. This fact limits the efficacy of NAC in vivo.

Animal studies (mostly rodent models) have indicated
that NAC may be beneficial in the treatment of isch-
emia-reperfusion-induced oxidant injury in a variety of
tissues. NAC has been shown to have a neuroprotective
capacity during periods of transient forebrain or hip-
pocampal ischemia in rats. However, the efficacy of the
drug decreased as the duration of the ischemic period
increased (Knuckey et al., 1995).

Another recent study showed that preischemic admin-
istration of S-allylcysteine, another cysteine-containing
compound, inhibits free radical production, lipid peroxi-
dation, and neuronal damage in MCA occlusion model in
rats (Numagami and Ohnishi, 2001). Because NAC was
used and demonstrated to be helpful in various non-
neurological diseases, its brain-penetrated derivates
should be developed and employed in stroke.

9. Glutathione. GSH is a ubiquitous tri-peptide
formed from three amino acids—glutamate, glycine, and
cysteine—and synthesized by two ATP-dependent enzy-
matic reactions (Richman and Meister, 1975; Meister
and Anderson, 1983). It can also be generated from
metabolism of NAC. GSH has major intracellular anti-
oxidant activity, mainly due to the thiol group within the
molecule. It plays a critical role in detoxification of per-
oxides and electrophilic toxins as a substrate for GSH
peroxidase and GSH transferase (Larsson et al., 1983;
Meister and Anderson, 1983).

It was shown that GSH depletion (e.g., by buthionine
sulfoximine, which inhibits �-glutamylcysteine syn-
thetase, the producing enzyme of GSH) enhances cere-
bral ischemic injury in rats (Mizui et al., 1992). Shiva-
kumar et al. (1995) showed that GSH levels were
decreased in brain regions during reperfusion for 1 h
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after moderate or severe ischemia for 0.5 h. However,
Zaidan and Sims (1996) showed a 150% increase in GSH
levels in the mitochondria after 30 min of forebrain
ischemia in rats. Thus, rapid restoration of thiol ho-
meostasis in the brain during reperfusion may help the
brain recover from ischemia-reperfusion injury.

The glutathione analog YM737 was shown to reduce
lethality, increase brain-water levels, and decrease mal-
ondialdehyde levels in cerebral ischemic rats when given
immediately after ischemia, suggesting that its anti-
ischemic effects are due, in part, to inhibition of lipid
peroxidative responses (Yamamoto et al., 1993). These
short therapeutic time windows for intervention in GSH
system make the task of repeating these results in clin-
ical trials even more difficult.

10. Metal Ion Chelators. Free metal ions are associ-
ated with the pathology of various neurodegenerative
diseases (e.g., copper in Wilson’s disease and iron in the
substantia nigra in Parkinson’s disease). Therefore, pro-
teins that are involved in the binding of metal ions were
suggested to act as antioxidants. These may include
transferrin (binds iron), ceruloplasmin (binds copper),
and hemopexin (binds heme, a catalyst in oxidative re-
actions). Desferral, a potent chelator of redox-active
metals, was shown to facilitate the clinical recovery of
traumatized rats in a model of CHI (Zhang et al., 1998).
Deferoxamine, an iron catalyst in the generation of free
radicals and lipid peroxides, given prior or soon after the
ischemic episode improved survival and physiological
functions in rats (Palmer et al., 1994), dogs (Hurn et al.,
1995), and mice (Sarco et al., 2000). However, Fleischer
et al. (1987) did not find any benefit of deferoxamine in
complete cerebral ischemia in dogs.

In an experimental model of SAH (Vollmer et al.,
1991), the administration of deferoxamine 16 h before
the induction of SAH, showed a consistent attenuation of
vascular contraction of cerebral vessels of 77%. The sig-
nificance of these results to clinical practice in stroke
and other OS-involved diseases is quite limited, due to
the short therapeutic time windows. Because metal ions
have an important role in many enzyme activities, such
intervention may be toxic and limit the clinical applica-
tions.

11. Uric Acid. Uric acid is a waste product of the
living cell, which is produced by xanthine oxidase. It is
widely distributed in relatively high concentrations
throughout the body. Urate contributes up to 60% of the
total plasma antioxidant activity in healthy subjects
(Wayner et al., 1987, Benzie, 1996). It acts as an anti-
oxidant by interacting with 10 to 15% of the hydroxyl
radicals produced daily and by efficiently scavenging
both peroxyl radicals and singlet oxygen (Ames et al.,
1981). It also binds iron (Davies et al., 1986) and acts
indirectly by stabilizing plasma ascorbate (Sevanian et
al., 1991). In contrast, Benzie and Strain (1996) hypoth-
esized that urate at high concentrations acts as a pro-

oxidant and suggested that hyperuricemia is a risk fac-
tor for oxidative stress-associated disorders.

It was shown that the cerebral uric acid level in-
creases 10-fold after experimental CHI in rats 24 and
48 h after injury (Tayag et al., 1996). Administration of
uric acid to rats either 24 h before MCA occlusion (62.5
mg/kg, i.p.) or 1 h after reperfusion (16 mg/kg, i.v.)
resulted in a highly significant reduction of ischemic
damage to cerebral cortex and striatum. Uric acid also
improved the behavioral outcome in these rats (Yu et al.,
1998). Implementation of these results to clinical prac-
tice is quite limited, due to the above short therapeutic
time windows.

12. Creatine. Creatine (N-[aminoiminomethyl]-N-
methyl glycine) is a tri-peptide endogenously produced
from glycine, methionine, and arginine in the liver, kid-
ney, and pancreas (McArdle et al., 1999). Creatine can
be found in the muscle, but also in brain tissue (Mujika
and Padilla, 1997). Recent experimental findings have
demonstrated that creatine provides significant neuro-
protection against ischemic and oxidative insults (Holtz-
man et al., 1998; Balestrino et al., 1999). Sullivan et al.
(2000) showed that chronic administration of creatine
ameliorated the extent of cortical damage by as much as
36% in mice and 50% in rats after experimental trau-
matic brain injury. The protection seemed to be related
to creatine-induced maintenance of mitochondrial bioen-
ergetics. Mitochondrial membrane potential was signif-
icantly increased, intramitochondrial levels of ROS and
calcium were significantly decreased, and ATP levels
were maintained. This new agent should be intensively
investigated before clinical studies for acute CNS injury
are performed.

13. Lazaroids. Lazaroids are 21-aminosteroids de-
rived from glucocorticosteroids, but they lack glucocor-
ticoid and mineralocorticoid activities. They scavenge
lipid peroxyl radicals and inhibit iron-dependent lipid
peroxidation (Hall, 1995). Tirilazad mesylate
(U-74006F), one of the lazaroid series, is a lipophilic
compound with a high affinity for vascular endothelium
(Hall et al., 1994). It was shown to protect the BBB
against traumatic or SAH-induced permeability. The
penetration of tirilazad to brain parenchyma is en-
hanced after acute CNS injury and disruption of the
BBB (Hall et al., 1994).

i. Animal Model Studies.
Ischemia. Lazaroids were shown to protect

against ischemic damage in several species (Hall and
Braughler, 1989; Hall, 1995; Clark et al., 1995). Tiril-
azad provided a neuroprotective effect in animal model
systems of focal cerebral ischemia-reperfusion injury to
the brain or spinal cord (Braughler and Hall, 1989; Xue
et al., 1992; Park, 1994; Hall, 1995). It has been demon-
strated to decrease infarct size secondary to permanent
MCA occlusion in rats (Beck and Bielenberg, 1991; Park
and Hall et al., 1994) and cats (Silvia et al., 1987). It
improved both 24- and 48-h survival in gerbils subjected
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to 3 h of unilateral carotid occlusion (Hall et al., 1988).
Other studies have shown that the novel lazaroid
LY231617 protects against ischemia-induced neuronal
damage in rat models of global cerebral ischemia (Cle-
mens et al., 1993; O’Neill et al., 1997).

Subarachnoid hemorrhage. Tirilazad mesylate
prevented SAH-induced chronic vasospasm in a rabbit
model (Zuccarello et al., 1989). Intravenous administra-
tion of the 21-aminosteroid U74389G, another potent
inhibitor of lipid peroxidation and a free radical scaven-
ger, in a dog model of SAH has significantly decreased
vasospasm (Macdonald et al., 1998).

Closed head injury. Administration of a single i.v.
dose (0.003–30 mg/kg) of tirilazad mesylate produced a
significant improvement in the neurological status 1 h
postinjury in head-injured mice (Hall, 1988a). Similarly,
it reduced BBB disruption in a controlled cortical impact
injury rat model (Smith et al., 1994) and attenuated
post-traumatic mortality and brain edema (Mcintosh et
al., 1992; Sanada et al., 1993).

Spinal cord injury. Tirilazad has been reported to
improve the neurological recovery of cats after a moder-
ately severe compression injury to the lumbar spinal cord
(Anderson et al., 1988, 1991; Hall, 1988b). It also improved
the subacute neurological recovery of rats subjected to a
compression spinal injury (Holtz and Gerdin, 1991).

ii. Clinical Studies. After demonstrating its cerebro-
protective efficacy in animal models, tirilazad has been
clinically evaluated in acute human neurological disorders.

Subarachnoid hemorrhage. In two very similar
multicenter trials of tirilazad in SAH, one in Europe,
Australia, and New Zealand and the other in North
America, conflicting results have been reported. Kassel
et al. (1996) showed reduced mortality in patients
treated with tirilazad (6 mg/kg/d for 10 days) and a
better 3-month neurological outcome compared with
those given placebo. Gender differences were observed,
probably due to the pharmacokinetics of tirilazads,
which is metabolized by the P450 enzyme system in the
liver (Fleishaker et al., 1995). In contrast, Haley et al.
(1997) found no differences between the tirilazad and
placebo groups. These conflicting results can be ex-
plained by differences in patient admission characteris-
tics, standard of care, or the use of anti-convulsive
drugs, which decreases the bioavailability of tirilazad.

Closed head injury. Two large multicenter trials of
tirilazad in moderate and severe closed head injury
failed to show any clear differences in outcome between
the treated and the placebo groups (Marshall et al.,
1998; Maas et al., 1999).

Spinal cord injury. Treatment with tirilazad (2.5
mg/kg every 6 h for 2 days) seemed to have equal efficacy
compared with 24-h infusion of methylprednisolone in
acute spinal injury patients (Bracken et al., 1997).

Huang et al. (2001) suggested that although the laz-
aroid compounds inhibit lipid peroxidation, they do not
reduce the frequency of deoxyribonucleic acid (DNA)

damage, adenosine tri-phosphate depletion, or loss of
cell replication, which occurs later. One of the major
problems concerning the use of 21-aminosteroids as neu-
roprotective agents is that they have low oral bioavail-
ability and brain uptake (Hall, 1991; Raub et al., 1993).
Due to the conflicting results, more experimental and
clinical data is needed to elucidate whether lazaroids
can be used in acute CNS injury.

14. Nicaraven. Two recent studies using nicaraven
(also called AVS (�)-N,N�-propylenedinicotinamide), a
hydroxyl radical scavenger, confirmed its antivasospas-
tic and brain-protective activities, accompanied by im-
proved cerebral blood flow and glucose use in a rat model
of SAH (Germano et al., 1998; Yamamoto et al., 2000).

Nicaraven has been tried in a prospective, placebo-
controlled, double-blind, multicenter trial (Asano et al.,
1996) for evaluation as an antivasospastic agent in SAH.
Nicaraven seemed to reduce symptomatic vasospasm
significantly (34.5%) and improved Glasgow outcome
scale at 1 month. At 3 months, the differences in the
Glasgow outcome scale between the groups became mar-
ginal, but the percentage of good outcome tended to
increase, and the cumulative incidence of death was
significantly reduced.

15. Other Antioxidants.
i. 2,4-Diamino-Pyrrolo[2,3-D] Pyrimidines. In vivo

models of oxidative injury in mice (Hall et al., 1997) and
ischemia models in rats (Schmid-Elasesser et al., 1997)
have recently shown some efficacy of the novel 2,4-dia-
mino-pyrrolo [2,3-D] pyrimidines. These molecules, ad-
ministered orally, were identified as having a much
greater BBB penetration capacity (Hall et al., 1997) and
high-lipophilic antioxidant activity with protective ef-
fects (Bundy et al., 1995).

ii. Polyamines. It has been well established that al-
terations in polyamines (e.g., spermidine and spermine),
which are potent antioxidants and anti-inflammatory
agents, occur in animal models of focal and global isch-
emia and traumatic brain injury (Johnson, 1998). Gilad
and Gilad (1991, 1992) found that polyamines could

TABLE 1
Antioxidants and free radical scavengers currently available for the

treatment of acute CNS injury

● Endogenous enzymes, e.g., SOD and glutathione peroxidase-like
molecules (e.g., ebselen)

● Endogenous antioxidant compounds (also found in diet), e.g.,
tocopherols (vitamin E), ascorbic acid (vitamin C), carotenoids
(�-carotene)

● Other endogenous antioxidant substances, e.g., uric acid,
glutathione, and glutathione precursors e.g., cysteine (given as
NAC), melatonin, and creatine

● Endogenous antioxidant cofactors, e.g., coenzyme Q10

● Metal chelators, e.g., deferoxamine, desferal, and nitrone-based
free radical traps e.g., PBN and lipoic acid

● Naturally occurring plant substances, e.g., flavonoids
● Synthetic free radical compounds, e.g., 21-aminosteroids

(lazaroids) and pyrrolopyrimidines
● Other compounds, e.g., polyamines, MCI-186
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protect against ischemia-induced nerve cell death in the
gerbil forebrain.

iii. MCI-186. This is a free radical scavenger that
was shown to inhibit in vitro both nonenzymatic lipid
peroxidation and lipoxygenase activity. MCI-186 (3 mg/
kg, i.v.) markedly attenuated the ischemic and postisch-
emic brain swelling after MCA-O (3 and 6 h of ischemia)
and reperfusion in rats (Abe et al., 1988).

III. Conclusion and Future Strategies

An increasing amount of evidence suggests that OS is
important in either the primary or the secondary patho-
physiological mechanisms underlying acute CNS injury.
In addition, reduction in the endogenous antioxidant
defense system due to environmental and genetic factors
may contribute to OS evolution. Therefore, the discovery
and development of potent antioxidant agents has been
one of the most interesting and promising approaches in
the search for treatment of CNS injury. Antioxidants of
varying chemical structures have been investigated as
therapeutic agents in the treatment of acute CNS injury
(Table 1). Although some of the antioxidants showed
efficiency in animal models, most of them did not show
beneficial effect in clinical trials performed to date (Ta-
ble 2). To achieve efficacy, the antioxidant must be given

during the “time window” available between the vascu-
lar event and irreversible neuronal loss. They also
should fit to the precise OS physiology, e.g., the type of
ROS involved, the place of generation, and the severity
of the damage. Moreover, antioxidants must penetrate
the BBB to attain a critical therapeutic level within the
CNS. Thus, pharmacotherapy for closed head injury and
SAH is less problematic than for other acute CNS inju-
ries, because there is obvious disruption of the BBB,
enabling easier drug penetration to the brain. Potential
reasons for antioxidant failure to achieve neuroprotec-
tion in clinical trials include narrow “time window”,
suboptimal drug dose, inappropriate drug levels at the
target CNS site, and discrepancy in drug mechanism
and pathophysiological processes (Table 3). Antioxi-
dants may have differential effects in protecting nucleic
acids, proteins, and lipids from free radical damage and
some compounds may be preferentially localized within
specific subcellular organelles. Thus, antioxidant cock-
tails or antioxidants combined with other drugs such as
calcium antagonists, glutamate antagonists, or anti-ap-
optotic agents, may have more successful synergistic
effects. Better understanding of the underlying patho-
logic al mechanisms of acute CNS injury and improve-
ment of the molecular design of antioxidants will open a

TABLE 2
Efficacy of antioxidants in the treatment of cerebral ischemia and intracranial hemorrhage in clinical studies

Antioxidant Disease Efficacy References

Vitamins (mainly E, C, carotenoids (�-carotene), and flavonoids Ischemic stroke � Gey et al., 1993; Keli et al., 1996;
Daviglus et al., 1997

� Blot et al., 1993; Hennekens et al.,
1996

�/� Yochum et al., 2000 (just from food)
Ebselen � Yamaguchi et al., 1998

� Ogawa et al., 1999
SAH � Saito et al., 1998

Tirilazad mesylate SAH � Kassel et al., 1996
� Haley et al., 1997

Head injury � Marshall et al., 1998; Maas et al., 1999
Spinal cord injury � Bracken et al., 1997

Superoxide dismutase-like Head injury � Young et al., 1996
Nicaraven SAH � Asano et al., 1996

TABLE 3
Possible reasons for lesser efficacy of antioxidants in clinical studies

● Current theories about mode of drug action in arresting propagation of neuronal damage in the ischemic territory are inappropriate.
● Current experimental models of ischemia are inappropriate to human stroke.
● Effective neuroprotection by drug in the models cannot predict success in the human illness.
● Drug that inhibits one parameter of injury might be insufficient to inactivate other parallel pathways of the ischemic destructive

cascade.
● Stroke is associated with several injuries induced by various mechanisms. Single treatment might miss the “time window”

opportunity, e.g., glutamate toxicity may occur early and last only a short time.
● Antioxidants should be given in very narrow range of therapeutic dosages. As with vitamins, antioxidants given in high doses in a

certain redox situation might become pro-oxidants and toxic.
● Inadequate circulation in collateral vessels preventing adequate delivery of the drug to a major portion of the ischemic tissue.
● Inadequate penetration into salvageable portion of the ischemic zone that maintains BBB integrity.
● Genetic, environmental, age, and dietary background differences between the study trials.
● Source of supplementation: natural vs. synthetic agents might influence the study outcome.
● The high heterogeneity of the brain damage size and neurological outcome in human stroke patients, making it difficult to obtain

statistically significant effects of therapeutic agents.
● Brain structure, function, and vascular anatomy of humans and animals differ.
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full spectrum of possibilities for treatment of various
types of injuries.
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